

Welcome to Cookiecutter Django’s documentation!

A Cookiecutter [https://github.com/cookiecutter/cookiecutter] template for Django.

Contents:

	Project Generation Options

	Getting Up and Running Locally
	Setting Up Development Environment

	Setup Email Backend

	Celery

	Sass Compilation & Live Reloading

	Summary

	Getting Up and Running Locally With Docker
	Prerequisites

	Build the Stack

	Run the Stack

	Execute Management Commands

	(Optionally) Designate your Docker Development Server IP

	Configuring the Environment

	Tips & Tricks

	Developing locally with HTTPS

	Settings
	Other Environment Settings

	KDL Settings

	Linters
	flake8

	pylint

	pycodestyle

	Testing
	Pytest

	Coverage

	Document
	Generate API documentation

	Setting up ReadTheDocs

	Versioning
	Git Commit Messages

	Deployment on PythonAnywhere
	Overview

	Getting your code and dependencies installed on PythonAnywhere

	Setting environment variables in the console

	Database setup:

	Configure the PythonAnywhere Web Tab

	Optional: static files

	Future deployments

	Deployment on Heroku
	Commands to run

	Optional actions

	About Heroku & Docker

	Deployment with Docker
	Prerequisites

	Understanding the Docker Compose Setup

	Configuring the Stack

	Optional: Use AWS IAM Role for EC2 instance

	HTTPS is On by Default

	(Optional) Postgres Data Volume Modifications

	Building & Running Production Stack

	Example: Supervisor

	Docker Security

	PostgreSQL Backups with Docker
	Prerequisites

	Creating a Backup

	Viewing the Existing Backups

	Copying Backups Locally

	Restoring from the Existing Backup

	Backup to Amazon S3

	Sass Compilation & Live Reloading

	Websocket
	Usage

	FAQ
	Why is there a django.contrib.sites directory in Cookiecutter Django?

	Why aren’t you using just one configuration file (12-Factor App)

	Why doesn’t this follow the layout from Two Scoops of Django?

	Troubleshooting
	Server Error on sign-up/log-in

	Docker: Postgres authentication failed

	Others

Indices and tables

	Index

	Search Page

Project Generation Options

	project_name:

	Your project’s human-readable name, capitals and spaces allowed.

	project_slug:

	Your project’s slug without dashes or spaces. Used to name your repo
and in other places where a Python-importable version of your project name
is needed.

	description:

	Describes your project and gets used in places like README.rst and
such.

	author_name:

	This is you! The value goes into places like LICENSE and such.

	email:

	The email address you want to identify yourself in the project.

	domain_name:

	The domain name you plan to use for your project once it goes live.
Note that it can be safely changed later on whenever you need to.

	version:

	The version of the project at its inception.

	open_source_license:

	A software license for the project. The choices are:

	MIT [https://opensource.org/licenses/MIT]

	BSD [https://opensource.org/licenses/BSD-3-Clause]

	GPLv3 [https://www.gnu.org/licenses/gpl.html]

	Apache Software License 2.0 [http://www.apache.org/licenses/LICENSE-2.0]

	Not open source

	timezone:

	The value to be used for the TIME_ZONE setting of the project.

	windows:

	Indicates whether the project should be configured for development on
Windows.

	use_pycharm:

	Indicates whether the project should be configured for development with
PyCharm [https://www.jetbrains.com/pycharm/].

	use_docker:

	Indicates whether the project should be configured to use Docker [https://github.com/docker/docker] and
Docker Compose [https://docs.docker.com/compose/].

	postgresql_version:

	Select a PostgreSQL [https://www.postgresql.org/docs/] version to use. The choices are:

	12.3

	11.8

	10.8

	9.6

	9.5

	js_task_runner:

	Select a JavaScript task runner. The choices are:

	None

	Gulp [https://github.com/gulpjs/gulp]

	cloud_provider:

	Select a cloud provider for static & media files. The choices are:

	AWS [https://aws.amazon.com/s3/]

	GCP [https://cloud.google.com/storage/]

	None

Note that if you choose no cloud provider, the media files will be served by a
local nginx instance.

	mail_service:

	Select an email service that Django-Anymail provides

	Mailgun [https://www.mailgun.com]

	Amazon SES [https://aws.amazon.com/ses/]

	Mailjet [https://www.mailjet.com]

	Mandrill [http://mandrill.com]

	Postmark [https://postmarkapp.com]

	SendGrid [https://sendgrid.com]

	SendinBlue [https://www.sendinblue.com]

	SparkPost [https://www.sparkpost.com]

	Other SMTP [https://anymail.readthedocs.io/en/stable/]

	use_async:

	Indicates whether the project should use web sockets with Uvicorn + Gunicorn.

	use_drf:

	Indicates whether the project should be configured to use Django Rest Framework [https://github.com/encode/django-rest-framework/].

	custom_bootstrap_compilation:

	Indicates whether the project should support Bootstrap recompilation
via the selected JavaScript task runner’s task. This can be useful
for real-time Bootstrap variable alteration.

	use_compressor:

	Indicates whether the project should be configured to use
Django Compressor [https://github.com/django-compressor/django-compressor].

	use_celery:

	Indicates whether the project should be configured to use Celery [https://github.com/celery/celery].

	use_mailhog:

	Indicates whether the project should be configured to use MailHog [https://github.com/mailhog/MailHog].

	use_sentry:

	Indicates whether the project should be configured to use Sentry [https://github.com/getsentry/sentry].

	use_whitenoise:

	Indicates whether the project should be configured to use WhiteNoise [https://github.com/evansd/whitenoise].

	use_heroku:

	Indicates whether the project should be configured so as to be deployable
to Heroku [https://github.com/heroku/heroku-buildpack-python].

	ci_tool:

	Select a CI tool for running tests. The choices are:

	Travis CI [https://travis-ci.org/]

	Gitlab CI [https://docs.gitlab.com/ee/ci/]

	Github Actions [https://docs.github.com/en/actions]

	None

	use_activecollab_digger:

	Indicates whether the project should install the ActiveCollab Digger [https://github.com/kingsdigitallab/django-activecollab-digger] app
for the ActiveCollab project management tool.

	use_elasticsearch:

	Indicates whether the project should be configured to use the
Elasticsearch [https://www.elastic.co/products/elasticsearch] search engine and the Kibana [https://www.elastic.co/products/kibana] platform.

	use_ldap_authentication:

	Indicates whether the project should be configured to use LDAP
authentication via the django-auth-ldap [https://django-auth-ldap.readthedocs.io/] app.

	use_wagtail:

	Indicates whether the project should be configure to use the Wagtail [https://wagtail.io/] CMS
with the django-kdl-wagtail [https://github.com/kingsdigitallab/django-kdl-wagtail] app.

	use_wagtail_search:

	Indicates whether the project should be configured to use the
Wagtail CMS search [https://docs.wagtail.io/en/v2.7.1/reference/contrib/postgres_search.html].

	keep_local_envs_in_vcs:

	Indicates whether the project’s .envs/.local/ should be kept in VCS
(comes in handy when working in teams where local environment
reproducibility is strongly encouraged).
Note: .env(s) are only utilized when Docker Compose and/or Heroku support
is enabled.

	debug:

	Indicates whether the project should be configured for debugging.
This option is relevant for Cookiecutter Django developers only.

Getting Up and Running Locally

Setting Up Development Environment

Make sure to have the following on your host:

	Python 3.8

	PostgreSQL [https://www.postgresql.org/download/].

	Redis [https://redis.io/download], if using Celery

	Cookiecutter [https://github.com/cookiecutter/cookiecutter]

First things first.

	Create a virtualenv:

$ python3.8 -m venv <virtual env path>

	Activate the virtualenv you have just created:

$ source <virtual env path>/bin/activate

	Install cookiecutter-django:

$ cookiecutter gh:pydanny/cookiecutter-django

	Install development requirements:

$ pip install -r requirements/local.txt
$ git init # A git repo is required for pre-commit to install
$ pre-commit install

Note

the pre-commit exists in the generated project as default.
for the details of pre-commit, follow the [site of pre-commit](https://pre-commit.com/).

	Create a new PostgreSQL database using createdb [https://www.postgresql.org/docs/current/static/app-createdb.html]:

$ createdb <what you have entered as the project_slug at setup stage> -U postgres --password <password>

Note

if this is the first time a database is created on your machine you might need an
initial PostgreSQL set up [http://suite.opengeo.org/docs/latest/dataadmin/pgGettingStarted/firstconnect.html] to allow local connections & set a password for
the postgres user. The postgres documentation [https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html] explains the syntax of the config file
that you need to change.

	Set the environment variables for your database(s):

$ export DATABASE_URL=postgres://postgres:<password>@127.0.0.1:5432/<DB name given to createdb>
Optional: set broker URL if using Celery
$ export CELERY_BROKER_URL=redis://localhost:6379/0

Note

Check out the Settings page for a comprehensive list of the environments variables.

See also

To help setting up your environment variables, you have a few options:

	create an .env file in the root of your project and define all the variables you need in it.
Then you just need to have DJANGO_READ_DOT_ENV_FILE=True in your machine and all the variables
will be read.

	Use a local environment manager like direnv [https://direnv.net/]

	Apply migrations:

$ python manage.py migrate

	If you’re running synchronously, see the application being served through Django development server:

$ python manage.py runserver 0.0.0.0:8000

or if you’re running asynchronously:

$ uvicorn config.asgi:application --host 0.0.0.0 --reload

Setup Email Backend

MailHog

Note

In order for the project to support MailHog it must have been bootstrapped with use_mailhog set to y.

MailHog is used to receive emails during development, it is written in Go and has no external dependencies.

For instance, one of the packages we depend upon, django-allauth sends verification emails to new users signing up as well as to the existing ones who have not yet verified themselves.

	Download the latest MailHog release [https://github.com/mailhog/MailHog] for your OS.

	Rename the build to MailHog.

	Copy the file to the project root.

	Make it executable:

$ chmod +x MailHog

	Spin up another terminal window and start it there:

./MailHog

	Check out http://127.0.0.1:8025/ to see how it goes.

Now you have your own mail server running locally, ready to receive whatever you send it.

Console

Note

If you have generated your project with use_mailhog set to n this will be a default setup.

Alternatively, deliver emails over console via EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'.

In production, we have Mailgun [https://www.mailgun.com/] configured to have your back!

Celery

If the project is configured to use Celery as a task scheduler then by default tasks are set to run on the main thread
when developing locally. If you have the appropriate setup on your local machine then set the following
in config/settings/local.py:

CELERY_TASK_ALWAYS_EAGER = False

To run Celery locally, make sure redis-server is installed (instructions are available at https://redis.io/topics/quickstart), run the server in one terminal with redis-server, and then start celery in another terminal with the following command:

celery -A config.celery_app worker --loglevel=info

Sass Compilation & Live Reloading

If you’d like to take advantage of live reloading and Sass compilation you can do so with a little
bit of preparation, see Sass Compilation & Live Reloading.

Summary

Congratulations, you have made it! Keep on reading to unleash full potential of Cookiecutter Django.

Getting Up and Running Locally With Docker

The steps below will get you up and running with a local development environment.
All of these commands assume you are in the root of your generated project.

Note

If you’re new to Docker, please be aware that some resources are cached system-wide
and might reappear if you generate a project multiple times with the same name (e.g.
this issue with Postgres).

Prerequisites

	Docker; if you don’t have it yet, follow the installation instructions [https://docs.docker.com/install/#supported-platforms];

	Docker Compose; refer to the official documentation for the installation guide [https://docs.docker.com/compose/install/].

Build the Stack

This can take a while, especially the first time you run this particular command on your development system:

$ docker-compose -f local.yml build

Generally, if you want to emulate production environment use production.yml instead. And this is true for any other actions you might need to perform: whenever a switch is required, just do it!

Run the Stack

This brings up both Django and PostgreSQL. The first time it is run it might take a while to get started, but subsequent runs will occur quickly.

Open a terminal at the project root and run the following for local development:

$ docker-compose -f local.yml up

You can also set the environment variable COMPOSE_FILE pointing to local.yml like this:

$ export COMPOSE_FILE=local.yml

And then run:

$ docker-compose up

To run in a detached (background) mode, just:

$ docker-compose up -d

Execute Management Commands

As with any shell command that we wish to run in our container, this is done using the docker-compose -f local.yml run --rm command:

$ docker-compose -f local.yml run --rm django python manage.py migrate
$ docker-compose -f local.yml run --rm django python manage.py createsuperuser

Here, django is the target service we are executing the commands against.

(Optionally) Designate your Docker Development Server IP

When DEBUG is set to True, the host is validated against ['localhost', '127.0.0.1', '[::1]']. This is adequate when running a virtualenv. For Docker, in the config.settings.local, add your host development server IP to INTERNAL_IPS or ALLOWED_HOSTS if the variable exists.

Configuring the Environment

This is the excerpt from your project’s local.yml:

...

postgres:
 build:
 context: .
 dockerfile: ./compose/production/postgres/Dockerfile
 volumes:
 - local_postgres_data:/var/lib/postgresql/data
 - local_postgres_data_backups:/backups
 env_file:
 - ./.envs/.local/.postgres

...

The most important thing for us here now is env_file section enlisting ./.envs/.local/.postgres. Generally, the stack’s behavior is governed by a number of environment variables (env(s), for short) residing in envs/, for instance, this is what we generate for you:

.envs
├── .local
│ ├── .django
│ └── .postgres
└── .production
 ├── .django
 └── .postgres

By convention, for any service sI in environment e (you know someenv is an environment when there is a someenv.yml file in the project root), given sI requires configuration, a .envs/.e/.sI service configuration file exists.

Consider the aforementioned .envs/.local/.postgres:

PostgreSQL
--
POSTGRES_HOST=postgres
POSTGRES_DB=<your project slug>
POSTGRES_USER=XgOWtQtJecsAbaIyslwGvFvPawftNaqO
POSTGRES_PASSWORD=jSljDz4whHuwO3aJIgVBrqEml5Ycbghorep4uVJ4xjDYQu0LfuTZdctj7y0YcCLu

The three envs we are presented with here are POSTGRES_DB, POSTGRES_USER, and POSTGRES_PASSWORD (by the way, their values have also been generated for you). You might have figured out already where these definitions will end up; it’s all the same with django service container envs.

One final touch: should you ever need to merge .envs/.production/* in a single .env run the merge_production_dotenvs_in_dotenv.py:

$ python merge_production_dotenvs_in_dotenv.py

The .env file will then be created, with all your production envs residing beside each other.

Tips & Tricks

Fabric script

The Fabric [https://www.fabfile.org/] script fabfile.py can be used as a shortcut for interactions with
the Docker stack and for remote task automation. To get a list of the available tasks:

$ fab --list
Available tasks:

 backup Create a database backup.
 clone Clone the project repository into a host instance.
 compose Run a raw compose command.
 deploy Deploy the project. By default it creates a database backup before
 updating from source control and rebuilding the docker stack.
 django Run a Django management command.
 down Stop and remove stack components.
 restart Restart one or more services.
 restore Restore a database backup.
 shell Connect to a running service.
 start Start one or more services.
 stop Stop one or more services.
 test Run tests with pytest.
 up Build the stack for the host instance.
 update Update the host instance from source control.

And for more details on how to use a task:

$ fab --help TASK_NAME

For project specific configuration edit the [fabric] section in the setup.cfg
file.

Note

By default, when no options are passed to the task, the task will run in the local
machine. The clone and deploy tasks only run in the remote host.

Activate a Docker Machine

This tells our computer that all future commands are specifically for the dev1 machine. Using the eval command we can switch machines as needed.:

$ eval "$(docker-machine env dev1)"

Debugging

ipdb

If you are using the following within your code to debug:

import ipdb; ipdb.set_trace()

Then you may need to run the following for it to work as desired:

$ docker-compose -f local.yml run --rm --service-ports django

django-debug-toolbar

In order for django-debug-toolbar to work designate your Docker Machine IP with INTERNAL_IPS in local.py.

docker

The container_name from the yml file can be used to check on containers with docker commands, for example:

$ docker logs worker
$ docker top worker

Mailhog

When developing locally you can go with MailHog [https://github.com/mailhog/MailHog/] for email testing provided use_mailhog was set to y on setup. To proceed,

	make sure mailhog container is up and running;

	open up http://127.0.0.1:8025.

Celery tasks in local development

When not using docker Celery tasks are set to run in Eager mode, so that a full stack is not needed. When using docker the task scheduler will be used by default.

If you need tasks to be executed on the main thread during development set CELERY_TASK_ALWAYS_EAGER = True in config/settings/local.py.

Possible uses could be for testing, or ease of profiling with DJDT.

Celery Flower

Flower [https://github.com/mher/flower] is a “real-time monitor and web admin for Celery distributed task queue”.

Prerequisites:

	use_docker was set to y on project initialization;

	use_celery was set to y on project initialization.

By default, it’s enabled both in local and production environments (local.yml and production.yml Docker Compose configs, respectively) through a flower service. For added security, flower requires its clients to provide authentication credentials specified as the corresponding environments’ .envs/.local/.django and .envs/.production/.django CELERY_FLOWER_USER and CELERY_FLOWER_PASSWORD environment variables. Check out localhost:5555 and see for yourself.

Developing locally with HTTPS

Increasingly it is becoming necessary to develop software in a secure environment in order that there are very few changes when deploying to production. Recently Facebook changed their policies for apps/sites that use Facebook login which requires the use of an HTTPS URL for the OAuth redirect URL. So if you want to use the users application with a OAuth provider such as Facebook, securing your communication to the local development environment will be necessary.

On order to create a secure environment, we need to have a trusted SSL certficate installed in our Docker application.

	Let’s Encrypt

The official line from Let’s Encrypt is:

[For local development section] … The best option: Generate your own certificate, either self-signed or signed by a local root, and trust it in your operating system’s trust store. Then use that certificate in your local web server. See below for details.

See letsencrypt.org - certificates-for-localhost [https://letsencrypt.org/docs/certificates-for-localhost/]

	mkcert: Valid Https Certificates For Localhost

mkcert [https://github.com/FiloSottile/mkcert/blob/master/README.md#supported-root-stores] is a simple by design tool that hides all the arcane knowledge required to generate valid TLS certificates. It works for any hostname or IP, including localhost. It supports macOS, Linux, and Windows, and Firefox, Chrome and Java. It even works on mobile devices with a couple manual steps.

See https://blog.filippo.io/mkcert-valid-https-certificates-for-localhost/

After installing a trusted TLS certificate, configure your docker installation. We are going to configure an nginx reverse-proxy server. This makes sure that it does not interfere with our traefik configuration that is reserved for production environements.

These are the places that you should configure to secure your local environment.

certs

Take the certificates that you generated and place them in a folder called certs on the projects root folder. Assuming that you registered your local hostname as my-dev-env.local, the certificates you will put in the folder should have the names my-dev-env.local.crt and my-dev-env.local.key.

local.yml

	Add the nginx-proxy service.

...

nginx-proxy:
 image: jwilder/nginx-proxy:alpine
 container_name: nginx-proxy
 ports:
 - "80:80"
 - "443:443"
 volumes:
 - /var/run/docker.sock:/tmp/docker.sock:ro
 - ./certs:/etc/nginx/certs
 restart: always
 depends_on:
 - django

...

	Link the nginx-proxy to django through environmental variables.

django already has an .env file connected to it. Add the following variables. You should do this especially if you are working with a team and you want to keep your local environment details to yourself.

HTTPS
--
VIRTUAL_HOST=my-dev-env.local
VIRTUAL_PORT=8000

The services run behind the reverse proxy.

config/settings/local.py

You should allow the new hostname.

ALLOWED_HOSTS = ["localhost", "0.0.0.0", "127.0.0.1", "my-dev-env.local"]

Rebuild your docker application.

$ docker-compose -f local.yml up -d --build

Go to your browser and type in your URL bar https://my-dev-env.local

See https with nginx [https://codewithhugo.com/docker-compose-local-https/] for more information on this configuration.

.gitignore

Add certs/* to the .gitignore file. This allows the folder to be included in the repo but its contents to be ignored.

This configuration is for local development environments only. Do not use this for production since you might expose your local rootCA-key.pem.

Settings

This project relies extensively on environment settings which will not work with Apache/mod_wsgi setups. It has been deployed successfully with both Gunicorn/Nginx and even uWSGI/Nginx.

For configuration purposes, the following table maps environment variables to their Django setting and project settings:

	Environment Variable

	Django Setting

	Development Default

	Production Default

	DJANGO_READ_DOT_ENV_FILE

	READ_DOT_ENV_FILE

	False

	False

	Environment Variable

	Django Setting

	Development Default

	Production Default

	DATABASE_URL

	DATABASES

	auto w/ Docker; postgres://project_slug w/o

	raises error

	DJANGO_ADMIN_URL

	n/a

	‘admin/’

	raises error

	DJANGO_DEBUG

	DEBUG

	True

	False

	DJANGO_SECRET_KEY

	SECRET_KEY

	auto-generated

	raises error

	DJANGO_SECURE_BROWSER_XSS_FILTER

	SECURE_BROWSER_XSS_FILTER

	n/a

	True

	DJANGO_SECURE_SSL_REDIRECT

	SECURE_SSL_REDIRECT

	n/a

	True

	DJANGO_SECURE_CONTENT_TYPE_NOSNIFF

	SECURE_CONTENT_TYPE_NOSNIFF

	n/a

	True

	DJANGO_SECURE_FRAME_DENY

	SECURE_FRAME_DENY

	n/a

	True

	DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS

	HSTS_INCLUDE_SUBDOMAINS

	n/a

	True

	DJANGO_SESSION_COOKIE_HTTPONLY

	SESSION_COOKIE_HTTPONLY

	n/a

	True

	DJANGO_SESSION_COOKIE_SECURE

	SESSION_COOKIE_SECURE

	n/a

	False

	DJANGO_DEFAULT_FROM_EMAIL

	DEFAULT_FROM_EMAIL

	n/a

	“your_project_name <noreply@your_domain_name>”

	DJANGO_SERVER_EMAIL

	SERVER_EMAIL

	n/a

	“your_project_name <noreply@your_domain_name>”

	DJANGO_EMAIL_SUBJECT_PREFIX

	EMAIL_SUBJECT_PREFIX

	n/a

	“[your_project_name] “

	DJANGO_ALLOWED_HOSTS

	ALLOWED_HOSTS

	[‘*’]

	[‘your_domain_name’]

The following table lists settings and their defaults for third-party applications, which may or may not be part of your project:

	Environment Variable

	Django Setting

	Development Default

	Production Default

	CELERY_BROKER_URL

	CELERY_BROKER_URL

	auto w/ Docker; raises error w/o

	raises error

	DJANGO_AWS_ACCESS_KEY_ID

	AWS_ACCESS_KEY_ID

	n/a

	raises error

	DJANGO_AWS_SECRET_ACCESS_KEY

	AWS_SECRET_ACCESS_KEY

	n/a

	raises error

	DJANGO_AWS_STORAGE_BUCKET_NAME

	AWS_STORAGE_BUCKET_NAME

	n/a

	raises error

	DJANGO_AWS_S3_REGION_NAME

	AWS_S3_REGION_NAME

	n/a

	None

	DJANGO_AWS_S3_CUSTOM_DOMAIN

	AWS_S3_CUSTOM_DOMAIN

	n/a

	None

	DJANGO_GCP_STORAGE_BUCKET_NAME

	GS_BUCKET_NAME

	n/a

	raises error

	GOOGLE_APPLICATION_CREDENTIALS

	n/a

	n/a

	raises error

	SENTRY_DSN

	SENTRY_DSN

	n/a

	raises error

	SENTRY_ENVIRONMENT

	n/a

	n/a

	production

	SENTRY_TRACES_SAMPLE_RATE

	n/a

	n/a

	0.0

	DJANGO_SENTRY_LOG_LEVEL

	SENTRY_LOG_LEVEL

	n/a

	logging.INFO

	MAILGUN_API_KEY

	MAILGUN_API_KEY

	n/a

	raises error

	MAILGUN_DOMAIN

	MAILGUN_SENDER_DOMAIN

	n/a

	raises error

	MAILGUN_API_URL

	n/a

	n/a

	“https://api.mailgun.net/v3”

	MAILJET_API_KEY

	MAILJET_API_KEY

	n/a

	raises error

	MAILJET_SECRET_KEY

	MAILJET_SECRET_KEY

	n/a

	raises error

	MAILJET_API_URL

	n/a

	n/a

	“https://api.mailjet.com/v3”

	MANDRILL_API_KEY

	MANDRILL_API_KEY

	n/a

	raises error

	MANDRILL_API_URL

	n/a

	n/a

	“https://mandrillapp.com/api/1.0”

	POSTMARK_SERVER_TOKEN

	POSTMARK_SERVER_TOKEN

	n/a

	raises error

	POSTMARK_API_URL

	n/a

	n/a

	“https://api.postmarkapp.com/”

	SENDGRID_API_KEY

	SENDGRID_API_KEY

	n/a

	raises error

	SENDGRID_GENERATE_MESSAGE_ID

	True

	n/a

	raises error

	SENDGRID_MERGE_FIELD_FORMAT

	None

	n/a

	raises error

	SENDGRID_API_URL

	n/a

	n/a

	“https://api.sendgrid.com/v3/”

	SENDINBLUE_API_KEY

	SENDINBLUE_API_KEY

	n/a

	raises error

	SENDINBLUE_API_URL

	n/a

	n/a

	“https://api.sendinblue.com/v3/”

	SPARKPOST_API_KEY

	SPARKPOST_API_KEY

	n/a

	raises error

	SPARKPOST_API_URL

	n/a

	n/a

	“https://api.sparkpost.com/api/v1”

Other Environment Settings

	DJANGO_ACCOUNT_ALLOW_REGISTRATION (=True)

	Allow enable or disable user registration through django-allauth without disabling other characteristics like authentication and account management. (Django Setting: ACCOUNT_ALLOW_REGISTRATION)

KDL Settings

ActiveCollab Digger [https://github.com/kingsdigitallab/django-activecollab-digger]

	Environment Variable

	Django Setting

	Development Default

	Production Default

	AC_DIGGER_COMPANY_ID

	AC_COMPANY_ID

	n/a

	raises error

	AC_DIGGER_PROJECT_ID

	AC_PROJECT_ID

	n/a

	raises error

	AC_DIGGER_USER_ID

	AC_USER

	n/a

	raises error

	AC_DIGGER_API_TOKEN

	AC_TOKEN

	n/a

	raises error

LDAP Authentication [https://django-auth-ldap.readthedocs.io/]

These settings are only used in a production environment.

	Environment Variable

	Django Setting

	Development Default

	Production Default

	LDAP_SERVER_URI

	AUTH_LDAP_SERVER_URI

	n/a

	“ldap://ldap1.cch.kcl.ac.uk”

	LDAP_BIND_DN

	AUTH_LDAP_BIND_DN

	n/a

	“”

	LDAP_BIND_PASSWORD

	AUTH_LDAP_BIND_PASSWORD

	n/a

	“”

	LDAP_BASE_DC

	LDAP_BASE_DC

	n/a

	“dc=dighum,dc=kcl,dc=ac,dc=uk”

	LDAP_BASE_GROUP

	LDAP_BASE_GROUP

	n/a

	“kdl-staff”

	LDAP_FIRST_NAME_FIELD

	AUTH_LDAP_USER_ATTR_MAP

	n/a

	“givenName”

	LDAP_LAST_NAME_FIELD

	AUTH_LDAP_USER_ATTR_MAP

	n/a

	“sn”

	LDAP_EMAIL_FIELD

	AUTH_LDAP_USER_ATTR_MAP

	n/a

	“mail”

Elasticsearch [https://www.elastic.co/products/elasticsearch]

	Environment Variable

	Django Setting

	Development Default

	Production Default

	DISCOVERY_TYPE

	n/a

	single-node

	single-node

Kibana [https://www.elastic.co/guide/en/kibana/7.x/index.html]

	Environment Variable

	Django Setting

	Development Default

	Production Default

	SERVER_NAME

	n/a

	kibana

	kibana

	SERVER_HOST

	n/a

	0

	0

	ELASTICSEARCH_HOSTS

	n/a

	http://elasticsearch:9200

	http://elasticsearch:9200

Linters

flake8

To run flake8:

$ flake8

The config for flake8 is located in setup.cfg. It specifies:

	Set max line length to 88 chars

	Exclude .tox,.git,*/migrations/*,*/static/CACHE/*,docs,node_modules

pylint

To run pylint:

$ pylint <python files that you wish to lint>

The config for pylint is located in .pylintrc. It specifies:

	Use the pylint_django plugin. If using Celery, also use pylint_celery.

	Set max line length to 88 chars

	Disable linting messages for missing docstring and invalid name

	max-parents=13

pycodestyle

This is included in flake8’s checks, but you can also run it separately to see a more detailed report:

$ pycodestyle <python files that you wish to lint>

The config for pycodestyle is located in setup.cfg. It specifies:

	Set max line length to 88 chars

	Exclude .tox,.git,*/migrations/*,*/static/CACHE/*,docs,node_modules

Testing

We encourage users to build application tests. As best practice, this should be done immediately after documentation of the application being built, before starting on any coding.

Pytest

This project uses the Pytest [https://docs.pytest.org/en/latest/example/simple.html], a framework for easily building simple and scalable tests.
After you have set up to develop locally, run the following commands to make sure the testing environment is ready:

$ pytest

You will get a readout of the users app that has already been set up with tests. If you do not want to run the pytest on the entire project, you can target a particular app by typing in its location:

$ pytest <path-to-app-in-project/app>

If you set up your project to develop locally with docker, run the following command:

$ docker-compose -f local.yml run --rm django pytest

Targeting particular apps for testing in docker follows a similar pattern as previously shown above.

Coverage

You should build your tests to provide the highest level of code coverage. You can run the pytest with code coverage by typing in the following command:

$ docker-compose -f local.yml run --rm django coverage run -m pytest

Once the tests are complete, in order to see the code coverage, run the following command:

$ docker-compose -f local.yml run --rm django coverage report

Note

At the root of the project folder, you will find the pytest.ini file. You can use this to customize [https://docs.pytest.org/en/latest/customize.html] the pytest to your liking.

There is also the .coveragerc. This is the configuration file for the coverage tool. You can find out more about configuring [https://coverage.readthedocs.io/en/v4.5.x/config.html] coverage.

See also

For unit tests, run:

$ python manage.py test

Since this is a fresh install, and there are no tests built using the Python unittest [https://docs.python.org/3/library/unittest.html#module-unittest] library yet, you should get feedback that says there were no tests carried out.

Document

This project uses Sphinx [https://www.sphinx-doc.org/en/master/index.html] documentation generator.

After you have set up to develop locally, run the following command from the project directory to build and serve HTML documentation:

$ make -C docs livehtml

If you set up your project to develop locally with docker, run the following command:

$ docker-compose -f local.yml up docs

Navigate to port 7000 on your host to see the documentation. This will be opened automatically at localhost [http://localhost:7000/] for local, non-docker development.

Note: using Docker for documentation sets up a temporary SQLite file by setting the environment variable DATABASE_URL=sqlite:///readthedocs.db in docs/conf.py to avoid a dependency on PostgreSQL.

Generate API documentation

Edit the docs files and project application docstrings to create your documentation.

Sphinx can automatically include class and function signatures and docstrings in generated documentation.
See the generated project documentation for more examples.

Setting up ReadTheDocs

To setup your documentation on ReadTheDocs [https://readthedocs.org/], you must

	Go to ReadTheDocs [https://readthedocs.org/] and login/create an account

	Add your GitHub repository

	Trigger a build

Additionally, you can auto-build Pull Request previews, but you must enable it [https://docs.readthedocs.io/en/latest/guides/autobuild-docs-for-pull-requests.html#autobuild-documentation-for-pull-requests].

Versioning

This project uses bumpversion [https://github.com/c4urself/bump2version/] to manage the version strings related to
releases. The history.rst file should also be updated with the release
notes for each version.

To configure bumpversion edit the setup.cfg file. Running the
bumpversion command will run a git commit and git tag by default.
Also by default, the version is updated in the project’s __init__.py and
history.rst files.

Before running bumpversion, make sure all the changes are commited, and
run:

$ bump2version [major|minor|patch]

Examples:

$ cat setup.cfg | grep current_version
 current_version = 0.1.0

$ bump2version patch

$ cat setup.cfg | grep current_version
 current_version = 0.1.1

$ bump2version minor

$ cat setup.cfg | grep current_version
 current_version = 0.2.0

$ bump2version minor

$ cat setup.cfg | grep current_version
 current_version = 1.0.0

For more examples and configuration options see the bumpversion [https://github.com/c4urself/bump2version/] documentation.

Git Commit Messages

For the Git commit messages, it is recommend to use the Emoji-Log [https://github.com/ahmadawais/Emoji-Log] spec. Sample
.gitconfig configuration:

[alias]
 # https://opensource.com/article/19/2/emoji-log-git-commit-messages
 ac = "!f() { git add ${@:1:$(($# - 1))}; git commit -m \"${@:$#}\"; }; f"
 new = "!f() { git ac ${@:1:$(($# - 1))} \"📦 New: ${@:$#}\"; }; f"
 imp = "!f() { git ac ${@:1:$(($# - 1))} \"👌 Improve: ${@:$#}\"; }; f"
 fix = "!f() { git ac ${@:1:$(($# - 1))} \"🐛 Fix: ${@:$#}\"; }; f"
 rlz = "!f() { git ac ${@:1:$(($# - 1))} \"🚀 Release: ${@:$#}\"; }; f"
 doc = "!f() { git ac ${@:1:$(($# - 1))} \"📖 Doc: ${@:$#}\"; }; f"
 tst = "!f() { git ac ${@:1:$(($# - 1))} \"✅ Test: ${@:$#}\"; }; f"

Deployment on PythonAnywhere

Overview

Full instructions follow, but here’s a high-level view.

First time config:

	Pull your code down to PythonAnywhere using a Bash console and setup a virtualenv

	Set your config variables in the postactivate script

	Run the manage.py migrate and collectstatic {%- if cookiecutter.use_compressor == “y” %}and compress {%- endif %}commands

	Add an entry to the PythonAnywhere Web tab

	Set your config variables in the PythonAnywhere WSGI config file

Once you’ve been through this one-off config, future deployments are much simpler: just git pull and then hit the “Reload” button :)

Getting your code and dependencies installed on PythonAnywhere

Make sure your project is fully committed and pushed up to Bitbucket or Github or wherever it may be. Then, log into your PythonAnywhere account, open up a Bash console, clone your repo, and create a virtualenv:

git clone <my-repo-url> # you can also use hg
cd my-project-name
mkvirtualenv --python=/usr/bin/python3.8 my-project-name
pip install -r requirements/production.txt # may take a few minutes

Setting environment variables in the console

Generate a secret key for yourself, eg like this:

python -c 'import random;import string; print("".join(random.SystemRandom().choice(string.digits + string.ascii_letters + string.punctuation) for _ in range(50)))'

Make a note of it, since we’ll need it here in the console and later on in the web app config tab.

Set environment variables via the virtualenv “postactivate” script (this will set them every time you use the virtualenv in a console):

vi $VIRTUAL_ENV/bin/postactivate

TIP: If you don’t like vi, you can also edit this file via the PythonAnywhere “Files” menu; look in the “.virtualenvs” folder.

Add these exports

export WEB_CONCURRENCY=4
export DJANGO_SETTINGS_MODULE='config.settings.production'
export DJANGO_SECRET_KEY='<secret key goes here>'
export DJANGO_ALLOWED_HOSTS='<www.your-domain.com>'
export DJANGO_ADMIN_URL='<not admin/>'
export MAILGUN_API_KEY='<mailgun key>'
export MAILGUN_DOMAIN='<mailgun sender domain (e.g. mg.yourdomain.com)>'
export DJANGO_AWS_ACCESS_KEY_ID=
export DJANGO_AWS_SECRET_ACCESS_KEY=
export DJANGO_AWS_STORAGE_BUCKET_NAME=
export DATABASE_URL='<see below>'

NOTE: The AWS details are not required if you’re using whitenoise or the built-in pythonanywhere static files service, but you do need to set them to blank, as above.

Database setup:

Go to the PythonAnywhere Databases tab and configure your database.

	For Postgres, setup your superuser password, then open a Postgres console and run a CREATE DATABASE my-db-name. You should probably also set up a specific role and permissions for your app, rather than using the superuser credentials. Make a note of the address and port of your postgres server.

	For MySQL, set the password and create a database. More info here: https://help.pythonanywhere.com/pages/UsingMySQL

	You can also use sqlite if you like! Not recommended for anything beyond toy projects though.

Now go back to the postactivate script and set the DATABASE_URL environment variable:

export DATABASE_URL='postgres://<postgres-username>:<postgres-password>@<postgres-address>:<postgres-port>/<database-name>'
or
export DATABASE_URL='mysql://<pythonanywhere-username>:<mysql-password>@<mysql-address>/<database-name>'
or
export DATABASE_URL='sqlite:////home/yourusername/path/to/db.sqlite'

If you’re using MySQL, you may need to run pip install mysqlclient, and maybe add mysqlclient to requirements/production.txt too.

Now run the migration, and collectstatic:

source $VIRTUAL_ENV/bin/postactivate
python manage.py migrate
python manage.py collectstatic
{%- if cookiecutter.use_compressor == "y" %}python manage.py compress {%- endif %}
and, optionally
python manage.py createsuperuser

Configure the PythonAnywhere Web Tab

Go to the PythonAnywhere Web tab, hit Add new web app, and choose Manual Config, and then the version of Python you used for your virtualenv.

NOTE: If you’re using a custom domain (not on *.pythonanywhere.com), then you’ll need to set up a CNAME with your domain registrar.

When you’re redirected back to the web app config screen, set the path to your virtualenv. If you used virtualenvwrapper as above, you can just enter its name.

Click through to the WSGI configuration file link (near the top) and edit the wsgi file. Make it look something like this, repeating the environment variables you used earlier:

import os
import sys
path = '/home/<your-username>/<your-project-directory>'
if path not in sys.path:
 sys.path.append(path)

os.environ['DJANGO_SETTINGS_MODULE'] = 'config.settings.production'
os.environ['DJANGO_SECRET_KEY'] = '<as above>'
os.environ['DJANGO_ALLOWED_HOSTS'] = '<as above>'
os.environ['DJANGO_ADMIN_URL'] = '<as above>'
os.environ['MAILGUN_API_KEY'] = '<as above>'
os.environ['MAILGUN_DOMAIN'] = '<as above>'
os.environ['DJANGO_AWS_ACCESS_KEY_ID'] = ''
os.environ['DJANGO_AWS_SECRET_ACCESS_KEY'] = ''
os.environ['DJANGO_AWS_STORAGE_BUCKET_NAME'] = ''
os.environ['DATABASE_URL'] = '<as above>'

from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()

Back on the Web tab, hit Reload, and your app should be live!

NOTE: you may see security warnings until you set up your SSL certificates. If you
want to suppress them temporarily, set DJANGO_SECURE_SSL_REDIRECT to blank. Follow
the instructions here to get SSL set up: https://help.pythonanywhere.com/pages/SSLOwnDomains/

Optional: static files

If you want to use the PythonAnywhere static files service instead of using whitenoise or S3, you’ll find its configuration section on the Web tab. Essentially you’ll need an entry to match your STATIC_URL and STATIC_ROOT settings. There’s more info here: https://help.pythonanywhere.com/pages/DjangoStaticFiles

Future deployments

For subsequent deployments, the procedure is much simpler. In a Bash console:

workon my-virtualenv-name
cd project-directory
git pull
python manage.py migrate
python manage.py collectstatic
{%- if cookiecutter.use_compressor == "y" %}python manage.py compress {%- endif %}

And then go to the Web tab and hit Reload

TIP: if you’re really keen, you can set up git-push based deployments: https://blog.pythonanywhere.com/87/

Deployment on Heroku

Commands to run

Run these commands to deploy the project to Heroku:

heroku create --buildpack https://github.com/heroku/heroku-buildpack-python

heroku addons:create heroku-postgresql:hobby-dev
On Windows use double quotes for the time zone, e.g.
heroku pg:backups schedule --at "02:00 America/Los_Angeles" DATABASE_URL
heroku pg:backups schedule --at '02:00 America/Los_Angeles' DATABASE_URL
heroku pg:promote DATABASE_URL

heroku addons:create heroku-redis:hobby-dev

heroku addons:create mailgun:starter

heroku config:set PYTHONHASHSEED=random

heroku config:set WEB_CONCURRENCY=4

heroku config:set DJANGO_DEBUG=False
heroku config:set DJANGO_SETTINGS_MODULE=config.settings.production
heroku config:set DJANGO_SECRET_KEY="$(openssl rand -base64 64)"

Generating a 32 character-long random string without any of the visually similar characters "IOl01":
heroku config:set DJANGO_ADMIN_URL="$(openssl rand -base64 4096 | tr -dc 'A-HJ-NP-Za-km-z2-9' | head -c 32)/"

Set this to your Heroku app url, e.g. 'bionic-beaver-28392.herokuapp.com'
heroku config:set DJANGO_ALLOWED_HOSTS=

Assign with AWS_ACCESS_KEY_ID
heroku config:set DJANGO_AWS_ACCESS_KEY_ID=

Assign with AWS_SECRET_ACCESS_KEY
heroku config:set DJANGO_AWS_SECRET_ACCESS_KEY=

Assign with AWS_STORAGE_BUCKET_NAME
heroku config:set DJANGO_AWS_STORAGE_BUCKET_NAME=

git push heroku master

heroku run python manage.py createsuperuser

heroku run python manage.py check --deploy

heroku open

Warning

If your email server used to send email isn’t configured properly (Mailgun by default),
attempting to send an email will cause an Internal Server Error.

By default, django-allauth is setup to have emails verifications mandatory [https://django-allauth.readthedocs.io/en/latest/configuration.html?highlight=ACCOUNT_EMAIL_VERIFICATION],
which means it’ll send a verification email when an unverified user tries to
log-in or when someone tries to sign-up.

This may happen just after you’ve setup your Mailgun account, which is running in a
sandbox subdomain by default. Either add your email to the list of authorized recipients
or verify your domain.

Optional actions

Celery

Celery requires a few extra environment variables to be ready operational. Also, the worker is created,
it’s in the Procfile, but is turned off by default:

Set the broker URL to Redis
heroku config:set CELERY_BROKER_URL=`heroku config:get REDIS_URL`
Scale dyno to 1 instance
heroku ps:scale worker=1

Sentry

If you’re opted for Sentry error tracking, you can either install it through the Sentry add-on [https://elements.heroku.com/addons/sentry]:

heroku addons:create sentry:f1

Or add the DSN for your account, if you already have one:

heroku config:set SENTRY_DSN=https://xxxx@sentry.io/12345

Gulp & Bootstrap compilation

If you’ve opted for a custom bootstrap build, you’ll most likely need to setup
your app to use multiple buildpacks [https://devcenter.heroku.com/articles/using-multiple-buildpacks-for-an-app]: one for Python & one for Node.js:

heroku buildpacks:add --index 1 heroku/nodejs

At time of writing, this should do the trick: during deployment,
the Heroku should run npm install and then npm build,
which runs Gulp in cookiecutter-django.

If things don’t work, please refer to the Heroku docs.

About Heroku & Docker

Although Heroku has some sort of Docker support [https://devcenter.heroku.com/articles/build-docker-images-heroku-yml], it’s not supported by cookiecutter-django.
We invite you to follow Heroku documentation about it.

Deployment with Docker

Prerequisites

	Docker 17.05+.

	Docker Compose 1.17+

Understanding the Docker Compose Setup

Before you begin, check out the production.yml file in the root of this
project. Keep note of how it provides configuration for the following services:

	django: your application running behind Gunicorn;

	postgres: PostgreSQL database with the application’s relational data;

	redis: Redis instance for caching;

	traefik: Traefik reverse proxy with HTTPS on by default.

Provided you have opted for Celery (via setting use_celery to y) there
are three more services:

	celeryworker running a Celery worker process;

	celerybeat running a Celery beat process;

	flower running Flower [https://github.com/mher/flower].

The flower service is served by Traefik over HTTPS, through the port 5555. For more information about Flower and its login credentials, check out Celery Flower instructions for local environment.

Configuring the Stack

The majority of services above are configured through the use of environment
variables. Just check out Configuring the Environment and you will know the drill.

To obtain logs and information about crashes in a production setup, make sure
that you have access to an external Sentry instance (e.g. by creating an
account with sentry.io [https://sentry.io/welcome]), and set the SENTRY_DSN variable. Logs of level
logging.ERROR are sent as Sentry events. Therefore, in order to send a Sentry
event use:

import logging
logging.error("This event is sent to Sentry", extra={"<example_key>": "<example_value>"})

The extra parameter allows you to send additional information about the
context of this error.

You will probably also need to setup the Mail backend, for example by adding a
Mailgun [https://mailgun.com] API key and a Mailgun [https://mailgun.com] sender domain, otherwise, the account
creation view will crash and result in a 500 error when the backend attempts to
send an email to the account owner.

Warning

If your email server used to send email isn’t configured properly (Mailgun by default),
attempting to send an email will cause an Internal Server Error.

By default, django-allauth is setup to have emails verifications mandatory [https://django-allauth.readthedocs.io/en/latest/configuration.html?highlight=ACCOUNT_EMAIL_VERIFICATION],
which means it’ll send a verification email when an unverified user tries to
log-in or when someone tries to sign-up.

This may happen just after you’ve setup your Mailgun account, which is running in a
sandbox subdomain by default. Either add your email to the list of authorized recipients
or verify your domain.

Optional: Use AWS IAM Role for EC2 instance

If you are deploying to AWS, you can use the IAM role to substitute AWS
credentials, after which it’s safe to remove the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY from .envs/.production/.django. To do it, create
an IAM role [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html] and attach [https://aws.amazon.com/blogs/security/easily-replace-or-attach-an-iam-role-to-an-existing-ec2-instance-by-using-the-ec2-console/] it to the existing EC2 instance or create a new
EC2 instance with that role. The role should assume, at minimum, the
AmazonS3FullAccess permission.

HTTPS is On by Default

SSL (Secure Sockets Layer) is a standard security technology for establishing
an encrypted link between a server and a client, typically in this case, a web
server (website) and a browser. Not having HTTPS means that malicious network
users can sniff authentication credentials between your website and end users’
browser.

It is always better to deploy a site behind HTTPS and will become crucial as
the web services extend to the IoT (Internet of Things). For this reason, we
have set up a number of security defaults to help make your website secure:

	If you are not using a subdomain of the domain name set in the project, then remember to put your staging/production IP address in the DJANGO_ALLOWED_HOSTS environment variable (see Settings) before you deploy your website. Failure to do this will mean you will not have access to your website through the HTTP protocol.

	Access to the Django admin is set up by default to require HTTPS in production or once live.

The Traefik reverse proxy used in the default configuration will get you a
valid certificate from Lets Encrypt and update it automatically. All you need
to do to enable this is to make sure that your DNS records are pointing to the
server Traefik runs on.

You can read more about this feature and how to configure it, at
Automatic HTTPS [https://docs.traefik.io/https/acme/] in the Traefik docs.

(Optional) Postgres Data Volume Modifications

Postgres is saving its database files to the production_postgres_data
volume by default. Change that if you want something else and make sure to make
backups since this is not done automatically.

Building & Running Production Stack

You will need to build the stack first. To do that, run:

docker-compose -f production.yml build

Once this is ready, you can run it with:

docker-compose -f production.yml up

To run the stack and detach the containers, run:

docker-compose -f production.yml up -d

To run a migration, open up a second terminal and run:

docker-compose -f production.yml run --rm django python manage.py migrate

To create a superuser, run:

docker-compose -f production.yml run --rm django python manage.py createsuperuser

If you need a shell, run:

docker-compose -f production.yml run --rm django python manage.py shell

To check the logs out, run:

docker-compose -f production.yml logs

If you want to scale your application, run:

docker-compose -f production.yml up --scale django=4
docker-compose -f production.yml up --scale celeryworker=2

Warning

don’t try to scale postgres, celerybeat, or traefik.

To see how your containers are doing run:

docker-compose -f production.yml ps

Example: Supervisor

Once you are ready with your initial setup, you want to make sure that your
application is run by a process manager to survive reboots and auto restarts
in case of an error. You can use the process manager you are most familiar
with. All it needs to do is to run docker-compose -f production.yml up in
your projects root directory.

If you are using supervisor, you can use this file as a starting point:

[program:{{cookiecutter.project_slug}}]
command=docker-compose -f production.yml up
directory=/path/to/{{cookiecutter.project_slug}}
redirect_stderr=true
autostart=true
autorestart=true
priority=10

Move it to /etc/supervisor/conf.d/{{cookiecutter.project_slug}}.conf and
run:

supervisorctl reread
supervisorctl update
supervisorctl start {{cookiecutter.project_slug}}

For status check, run:

supervisorctl status

Docker Security

This section contains a list of security issues identified by the
Docker Bench for Security [https://github.com/docker/docker-bench-security] tool, after a deployment in an Ubuntu 16.04
machine using the instructions in Building & Running Production Stack,
and possible fixes.

Warning

After applying some of the fixes you might need to rebuild the stack,
otherwise the issues might still be reported when re-running
Docker Bench for Security [https://github.com/docker/docker-bench-security].

Issues

The numbers in the headings correspond to the Docker Bench for Security [https://github.com/docker/docker-bench-security] test
number.

1.2.1 - Ensure a separate partition for containers has been created

1.2.3 - Ensure auditing is configured for the Docker daemon and files/directories

Install auditd [https://linux.die.net/man/8/auditd]:

$ sudo apt-get install auditd

Edit the auditing system rules:

$ sudo vim /etc/audit/audit.rules

These rules instruct auditd to watch (-w) the specified file or directory and
log any writes or attribute changes (-p wa) to those files:

-w /etc/default/docker -p wa
-w /etc/docker -p wa
-w /etc/docker/daemon.json -p wa
-w /etc/sysconfig/docker -p wa
-w /lib/systemd/system/docker.service -p wa
-w /lib/systemd/system/docker.socket -p wa
-w /project/docker -p wa
-w /usr/bin/docker -p wa
-w /usr/bin/containerd -p wa
-w /usr/bin/runc -p wa
-w /var/lib/docker -p wa

Restart autditd:

$ sudo systemctl restart auditd

2 - Docker daemon configuration

/etc/docker/daemon.json

{
 "data-root": "/project/docker",
 "icc": false,
 "live-restore": true,
 "log-driver": "syslog",
 "no-new-privileges": true,
 "userland-proxy": false,
 "userns-remap": "default"
}

For more information on how to configure the Docker daemon see the official
Docker daemon [https://docs.docker.com/config/daemon/] documentation. Below is a short explanation for each of the
configuration options in daemon.json.

	data_root

	Root directory of persistent Docker state (default “/var/lib/docker”)

	icc

	2.1 - Ensure network traffic is restricted between containers on the
default bridge

	live-restore

	2.13 - Ensure live restore is Enabled

	log-driver

	2.12 - Ensure centralized and remote logging is configured

	no-new-privileges

	2.18 - Ensure containers are restricted from acquiring new privileges

	userland-proxy

	2.15 - Ensure Userland Proxy is Disabled

	userns-remap

	2.8 - Enable user namespace support

4.5 - Ensure Content trust for Docker is Enabled

To enable content trust for all users and sessions:

$ echo "DOCKER_CONTENT_TRUST=1" | sudo tee -a /etc/environment

For more information see the Docker content trust [https://docs.docker.com/engine/security/trust/content_trust/] documentation.

4.6 - Ensure that HEALTHCHECK instructions have been added to container images

This should also cover the issue with
5.26 - Ensure that container health is checked at runtime.

For example, to check every five minutes or so that a web-server is able to
serve the site’s main page within three seconds:

HEALTHCHECK --interval=5m --timeout=3s \
CMD curl -f http://localhost/ || exit 1

5.2 - Ensure that, if applicable, SELinux security options are set

5.7 - Ensure privileged ports are not mapped within containers

Mapping http port 80 and https port 443 is necessary for traefik/webserver. All
the other ports in the stack are not privileged ports.

5.10 - Ensure that the memory usage for containers is limited

Runtime options with Memory [https://docs.docker.com/config/containers/resource_constraints/#memory].

5.11 - Ensure CPU priority is set appropriately on the container

Runtime options with CPUs [https://docs.docker.com/config/containers/resource_constraints/#cpu].

5.12 - Ensure that the container’s root filesystem is mounted as read only

Mount host-sensitive directories as read-only. In the default cookiecutter
configuration no host-sensitive directories are shared with the containers.

5.13 - Ensure that incoming container traffic is bound to a specific host interface

5.14 - Ensure that the ‘on-failure’ container restart policy is set to ‘5’

Restart policy [https://docs.docker.com/compose/compose-file/#restart_policy].

5.25 - Ensure that the container is restricted from acquiring additional privileges

Set in /etc/docker/daemon.json.

5.27 - Ensure that Docker commands always make use of the latest version of their image

5.28 - Ensure that the PIDs cgroup limit is used

Useful Resources

	Top 20 Docker Security Tips [https://towardsdatascience.com/top-20-docker-security-tips-81c41dd06f57]

	10 Docker Image Security Best Practices [https://snyk.io/blog/10-docker-image-security-best-practices/]

	10+ top open-source tools for Docker security [https://techbeacon.com/security/10-top-open-source-tools-docker-security]

	How To Audit Docker Host Security with Docker Bench for Security on Ubuntu 16.04 [https://www.digitalocean.com/community/tutorials/how-to-audit-docker-host-security-with-docker-bench-for-security-on-ubuntu-16-04]

	Securing Docker Containers on AWS [https://www.nearform.com/blog/securing-docker-containers-on-aws/]

	Hardening Docker containers, images, and host - security toolkit [https://www.stackrox.com/post/2017/08/hardening-docker-containers-and-hosts-against-vulnerabilities-a-security-toolkit/]

	Building Docker Images using Docker Compose and Gitlab CI/CD [https://vgarcia.dev/blog/2019-06-17-building-docker-images-using-docker-compose-and-gitlab/]

PostgreSQL Backups with Docker

Note

For brevity it is assumed that you will be running the below commands against local environment, however, this is by no means mandatory so feel free to switch to production.yml when needed.

Prerequisites

	the project was generated with use_docker set to y;

	the stack is up and running: docker-compose -f local.yml up -d postgres.

Creating a Backup

To create a backup, run:

$ docker-compose -f local.yml exec postgres backup

Assuming your project’s database is named my_project here is what you will see:

Backing up the 'my_project' database...
SUCCESS: 'my_project' database backup 'backup_2018_03_13T09_05_07.sql.gz' has been created and placed in '/backups'.

Keep in mind that /backups is the postgres container directory.

Viewing the Existing Backups

To list existing backups,

$ docker-compose -f local.yml exec postgres backups

These are the sample contents of /backups:

These are the backups you have got:
total 24K
-rw-r--r-- 1 root root 5.2K Mar 13 09:05 backup_2018_03_13T09_05_07.sql.gz
-rw-r--r-- 1 root root 5.2K Mar 12 21:13 backup_2018_03_12T21_13_03.sql.gz
-rw-r--r-- 1 root root 5.2K Mar 12 21:12 backup_2018_03_12T21_12_58.sql.gz

Copying Backups Locally

If you want to copy backups from your postgres container locally, docker cp command [https://docs.docker.com/engine/reference/commandline/cp/] will help you on that.

For example, given 9c5c3f055843 is the container ID copying all the backups over to a local directory is as simple as

$ docker cp 9c5c3f055843:/backups ./backups

With a single backup file copied to . that would be

$ docker cp 9c5c3f055843:/backups/backup_2018_03_13T09_05_07.sql.gz .

Restoring from the Existing Backup

To restore from one of the backups you have already got (take the backup_2018_03_13T09_05_07.sql.gz for example),

$ docker-compose -f local.yml exec postgres restore backup_2018_03_13T09_05_07.sql.gz

You will see something like

Restoring the 'my_project' database from the '/backups/backup_2018_03_13T09_05_07.sql.gz' backup...
INFO: Dropping the database...
INFO: Creating a new database...
INFO: Applying the backup to the new database...
SET
SET
SET
SET
SET
 set_config

(1 row)

SET
...
ALTER TABLE
SUCCESS: The 'my_project' database has been restored from the '/backups/backup_2018_03_13T09_05_07.sql.gz' backup.

Backup to Amazon S3

For uploading your backups to Amazon S3 you can use the aws cli container. There is an upload command for uploading the postgres /backups directory recursively and there is a download command for downloading a specific backup. The default S3 environment variables are used.

$ docker-compose -f production.yml run --rm awscli upload
$ docker-compose -f production.yml run --rm awscli download backup_2018_03_13T09_05_07.sql.gz

Sass Compilation & Live Reloading

If you’d like to take advantage of live reload [http://livereload.com/] and Sass compilation:

	Make sure that nodejs [http://nodejs.org/download/] is installed. Then in the project root run:

$ npm install

	Now you just need:

$ npm run dev

The base app will now run as it would with the usual manage.py runserver but with live reloading and Sass compilation enabled.
When changing your Sass files, they will be automatically recompiled and change will be reflected in your browser without refreshing.

To get live reloading to work you’ll probably need to install an appropriate browser extension [http://livereload.com/extensions/]

Websocket

You can enable web sockets if you select use_async option when creating a project. That indicates whether the project can use web sockets with Uvicorn + Gunicorn.

Usage

JavaScript example:

> ws = new WebSocket('ws://localhost:8000/') // or 'wss://<mydomain.com>/' in prod
WebSocket {url: "ws://localhost:8000/", readyState: 0, bufferedAmount: 0, onopen: null, onerror: null, …}
> ws.onmessage = event => console.log(event.data)
event => console.log(event.data)
> ws.send("ping")
undefined
pong!

If you don’t use Traefik, you might have to configure your reverse proxy accordingly (example with Nginx [https://www.nginx.com/blog/websocket-nginx/]).

FAQ

Why is there a django.contrib.sites directory in Cookiecutter Django?

It is there to add a migration so you don’t have to manually change the sites.Site record from example.com to whatever your domain is. Instead, your {{cookiecutter.domain_name}} and {{cookiecutter.project_name}} value is placed by Cookiecutter in the domain and name fields respectively.

See 0003_set_site_domain_and_name.py [https://github.com/pydanny/cookiecutter-django/blob/master/%7B%7Bcookiecutter.project_slug%7D%7D/%7B%7Bcookiecutter.project_slug%7D%7D/contrib/sites/migrations/0003_set_site_domain_and_name.py].

Why aren’t you using just one configuration file (12-Factor App)

TODO
.. TODO

Why doesn’t this follow the layout from Two Scoops of Django?

You may notice that some elements of this project do not exactly match what we describe in chapter 3 of Two Scoops of Django 1.11 [https://www.feldroy.com/collections/django/products/two-scoops-of-django-1-11]. The reason for that is this project, amongst other things, serves as a test bed for trying out new ideas and concepts. Sometimes they work, sometimes they don’t, but the end result is that it won’t necessarily match precisely what is described in the book I co-authored.

Troubleshooting

This page contains some advice about errors and problems commonly encountered during the development of Cookiecutter Django applications.

Server Error on sign-up/log-in

Make sure you have configured the mail backend (e.g. Mailgun) by adding the API key and sender domain

If your email server used to send email isn’t configured properly (Mailgun by default),
attempting to send an email will cause an Internal Server Error.

By default, django-allauth is setup to have emails verifications mandatory [https://django-allauth.readthedocs.io/en/latest/configuration.html?highlight=ACCOUNT_EMAIL_VERIFICATION],
which means it’ll send a verification email when an unverified user tries to
log-in or when someone tries to sign-up.

This may happen just after you’ve setup your Mailgun account, which is running in a
sandbox subdomain by default. Either add your email to the list of authorized recipients
or verify your domain.

Docker: Postgres authentication failed

Examples of logs:

postgres_1 | 2018-06-07 19:11:23.963 UTC [81] FATAL: password authentication failed for user "pydanny"
postgres_1 | 2018-06-07 19:11:23.963 UTC [81] DETAIL: Password does not match for user "pydanny".
postgres_1 | Connection matched pg_hba.conf line 95: "host all all all md5"

If you recreate the project multiple times with the same name, Docker would preserve the volumes for the postgres container between projects. Here is what happens:

	You generate the project the first time. The .env postgres file is populated with the random password

	You run the docker-compose and the containers are created. The postgres container creates the database based on the .env file credentials

	You “regenerate” the project with the same name, so the postgres .env file is populated with a new random password

	You run docker-compose. Since the names of the containers are the same, docker will try to start them (not create them from scratch i.e. it won’t execute the Dockerfile to recreate the database). When this happens, it tries to start the database based on the new credentials which do not match the ones that the database was created with, and you get the error message above.

To fix this, you can either:

	Clear your project-related Docker cache with docker-compose -f local.yml down --volumes --rmi all.

	Use the Docker volume sub-commands to find volumes (ls [https://docs.docker.com/engine/reference/commandline/volume_ls/]) and remove them (rm [https://docs.docker.com/engine/reference/commandline/volume_rm/]).

	Use the prune [https://docs.docker.com/v17.09/engine/reference/commandline/system_prune/] command to clear system-wide (use with care!).

Others

	project_slug must be a valid Python module name or you will have issues on imports.

	jinja2.exceptions.TemplateSyntaxError: Encountered unknown tag 'now'.: please upgrade your cookiecutter version to >= 1.4 (see #528 [https://github.com/pydanny/cookiecutter-django/issues/528#issuecomment-212650373])

	New apps not getting created in project root: This is the expected behavior, because cookiecutter-django does not change the way that django startapp works, you’ll have to fix this manually (see #1725 [https://github.com/pydanny/cookiecutter-django/issues/1725#issuecomment-407493176])

Index

 Symbols
 | C
 | D
 | F
 | H
 | L
 | P
 | V

Symbols

 	
 	12-Factor App

C

 	
 	compose

D

 	
 	deployment

 	Docker

 	
 	docker

 	docker-compose

F

 	
 	FAQ

H

 	
 	Heroku

L

 	
 	linters

P

 	
 	pip

 	
 	PostgreSQL

 	PythonAnywhere

V

 	
 	virtualenv

 If your email server used to send email isn’t configured properly (Mailgun by default),
attempting to send an email will cause an Internal Server Error.

By default, django-allauth is setup to have emails verifications mandatory [https://django-allauth.readthedocs.io/en/latest/configuration.html?highlight=ACCOUNT_EMAIL_VERIFICATION],
which means it’ll send a verification email when an unverified user tries to
log-in or when someone tries to sign-up.

This may happen just after you’ve setup your Mailgun account, which is running in a
sandbox subdomain by default. Either add your email to the list of authorized recipients
or verify your domain.

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Cookiecutter Django’s documentation!

 		
 Project Generation Options

 		
 Getting Up and Running Locally

 		
 Setting Up Development Environment

 		
 Setup Email Backend

 		
 MailHog

 		
 Console

 		
 Celery

 		
 Sass Compilation & Live Reloading

 		
 Summary

 		
 Getting Up and Running Locally With Docker

 		
 Prerequisites

 		
 Build the Stack

 		
 Run the Stack

 		
 Execute Management Commands

 		
 (Optionally) Designate your Docker Development Server IP

 		
 Configuring the Environment

 		
 Tips & Tricks

 		
 Fabric script

 		
 Activate a Docker Machine

 		
 Debugging

 		
 Mailhog

 		
 Celery tasks in local development

 		
 Celery Flower

 		
 Developing locally with HTTPS

 		
 certs

 		
 local.yml

 		
 config/settings/local.py

 		
 .gitignore

 		
 Settings

 		
 Other Environment Settings

 		
 KDL Settings

 		
 ActiveCollab Digger

 		
 LDAP Authentication

 		
 Elasticsearch

 		
 Linters

 		
 flake8

 		
 pylint

 		
 pycodestyle

 		
 Testing

 		
 Pytest

 		
 Coverage

 		
 Document

 		
 Generate API documentation

 		
 Setting up ReadTheDocs

 		
 Versioning

 		
 Git Commit Messages

 		
 Deployment on PythonAnywhere

 		
 Overview

 		
 Getting your code and dependencies installed on PythonAnywhere

 		
 Setting environment variables in the console

 		
 Database setup:

 		
 Configure the PythonAnywhere Web Tab

 		
 Optional: static files

 		
 Future deployments

 		
 Deployment on Heroku

 		
 Commands to run

 		
 Optional actions

 		
 Celery

 		
 Sentry

 		
 Gulp & Bootstrap compilation

 		
 About Heroku & Docker

 		
 Deployment with Docker

 		
 Prerequisites

 		
 Understanding the Docker Compose Setup

 		
 Configuring the Stack

 		
 Optional: Use AWS IAM Role for EC2 instance

 		
 HTTPS is On by Default

 		
 (Optional) Postgres Data Volume Modifications

 		
 Building & Running Production Stack

 		
 Example: Supervisor

 		
 Docker Security

 		
 Issues

 		
 PostgreSQL Backups with Docker

 		
 Prerequisites

 		
 Creating a Backup

 		
 Viewing the Existing Backups

 		
 Copying Backups Locally

 		
 Restoring from the Existing Backup

 		
 Backup to Amazon S3

 		
 Sass Compilation & Live Reloading

 		
 Websocket

 		
 Usage

 		
 FAQ

 		
 Why is there a django.contrib.sites directory in Cookiecutter Django?

 		
 Why aren’t you using just one configuration file (12-Factor App)

 		
 Why doesn’t this follow the layout from Two Scoops of Django?

 		
 Troubleshooting

 		
 Server Error on sign-up/log-in

 		
 Docker: Postgres authentication failed

 		
 Others

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

